The DLCZ Protocol

Author: Bor Luka Urlep

Advisor: dr. Peter Jeglič

Co-advisor: Katja Gosar, mag. fiz.

Presentation Plan

Motivation

Quantum Communications (QC)
Pros and Cons of QC
The DLCZ Protocol's Idea

- Breakdown
 - \circ Topic Breakdown
 - \circ Quantum Memory
 - \circ Raman Transition
 - Entanglement

• The DLCZ Protocol

O Entanglement Creation
O Entanglement Purification
O Entanglement Swapping

- Conclusion
- Sources of Figures

Motivation – Quantum Communications

- Transmitted information is a quantum state
- Quantum bit qubit: 0/1 --> $|\psi
 angle=lpha|0
 angle+eta|1
 angle$, $|lpha|^2+|eta|^2=1$

• Stern-Gerlach, polarizing beam splitter (PBS)

Motivation – Quantum Communications

• Quantum key distribution (QKD) • Bennet-Brassard 1984 (BB84)

Motivation – Quantum Communications

Quantum state teleportation

$$|\Phi^+
angle = rac{1}{\sqrt{2}}ig(|0
angle_A\otimes|0
angle_B+|1
angle_A\otimes|1
angle_Big)$$

Motivation – Pros and Cons of Quantum Comm.

- Perfect security (QKD)
- Transmission of quantum states (quantum computing, internet)
- Quantum decoherence • Bottleneck on distance

$$\begin{split} |\psi\rangle &= \sum_{n} c_{n} |n\rangle; \quad \sum_{n} |c_{n}|^{2} = 1 & \text{PURE STATE} \\ \rho &= \sum_{j} p_{j} |\psi_{j}\rangle\langle\psi_{j}|; \quad \sum_{j} p_{j} = 1 & \text{DENSITY MATRIX} \\ \frac{1}{\sqrt{2}}(|a\rangle + e^{i\theta}|b\rangle) & \rho &= \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 1 & e^{-i\theta} \\ e^{i\theta} & 1 \end{bmatrix} & \rho \text{ECOHERENCE} \end{split}$$

The Protocol's Goal

• Quantum communications channel, where preparation time scales only polynomially with distance

Fig. 7: DLCZ protocol scheme

Breakdown - Quantum Memory

• Writing photonic states into atomic states

Fig. 8: Cs hyperfine D₂ transitions

Breakdown – Spontaneous Raman Transition

Fig. 11: (coherent) Raman transition

Breakdown – Spontaneous Raman Transition

$$|\Phi\rangle = |0_{\rm ens}\rangle|0_{\rm pho}\rangle + \sqrt{p_c} \ \hat{S}^{\dagger} \hat{a}^{\dagger}_{\rm pho}|0_{\rm ens}\rangle|0_{\rm pho}\rangle + O(p_c)$$

Breakdown – Entanglement by a BS

• Can entangle non-classical Fig. 12: Entangle with BS photon sources with a beam splitter \hat{a}_{pho} \square \hat{a}_{pho}

The DLCZ Protocol – Entanglement Creation

$$\begin{split} |0_{\text{pho}}\rangle + \sqrt{p_c} \, \hat{S}^{\dagger} \hat{a}_{\text{pho}}^{\dagger} |0_{\text{ens}}\rangle |0_{\text{pho}}\rangle + O(p_c) \\ & |\Phi\rangle_L \otimes |\Phi\rangle_R \\ \pm = (\hat{a}_{pho,L} \pm e^{i\zeta} \hat{a}_{pho,R})/\sqrt{2} \\ R = \frac{1}{\sqrt{2}} (\hat{S}_L^{\dagger} \pm e^{i\zeta} \hat{S}_R^{\dagger}) |0_{\text{ens}}\rangle_L |0_{\text{ens}}\rangle_R \\ & \downarrow |0_{\text{ens}}\rangle_R \\ &$$

А

The DLCZ Protocol – Entanglement Purification

- Unfair coin flipping binomial distr. => success p_cN times
 Must retry approx. 1/p_c times
- Photon loss efficiency $\eta_p \Rightarrow retry 1/p_c\eta_p$ times
- Dark count probability p_{dc}
- Vacuum coef. $c_0 = p_{dc}/p_c \eta_p << 1$
- double excitation

 \odot => fidelity imperfection $\Delta F \sim p_c$

- Preparation time T ~ $\Delta t/p_c \eta_p$
- Preparation time vs. fidelity

The DLCZ Protocol – Entanglement Swapping

• Same as with entanglement creation, but now we send in a control beam and expect anti-Stokes

Conclusion

- Required quantum memory for only polynomial scaling of preparation time with distance
- Spontaneous Raman transition required as a non-classical photon source (and quantum memory)
- We can entangle Raman quantum memories pairwise by erasing Stokes/anti-Stokes source path with a beam splitter
- If entanglement does not succeed, only repeat that section
- Ensembles contribute reliability

Sources of Figures

1. Stern-Gerlach experiment.svg. (2025, January 20). *Wikimedia Commons*. Retrieved, May 12, 2025 from <u>https://commons.wikimedia.org/w/index.php?title=File:Stern-Gerlach_experiment.svg&oldid=985480905</u>

2. polarisationsstrahlteilerwuerfel_01.jpg. Laser Components. Retrieved May 12, 2025 from https://www.lasercomponents.com/fileadmin/user_upload/home/Images/Casix/polarisationsstrahlteilerwuerfel_01.jpg

3. Mine

4. also mine

5. Bloch sphere.svg. (2023, November 28). *Wikimedia Commons*. Retrieved, May 12, 2025 from <u>https://commons.wikimedia.org/w/index.php?title=File:Bloch_sphere.svg&oldid=825787259</u>

6. Stimulated Emission.svg. (2025, April 2). *Wikimedia Commons*. Retrieved, May 12, 2025 from https://commons.wikimedia.org/w/index.php?title=File:Stimulated_Emission.svg&oldid=1016509175.

7. Sangouard, Nicolas and Simon, Christoph and de Riedmatten, Hugues and Gisin, Nicolas: Quantum repeaters based on atomic ensembles and linear optics, https://link.aps.org/doi/10.1103/RevModPhys.83.33

8.Ove Axner, Jrgen Gustafsson, Nicolo Omenetto, and James D. Winefordner. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry – a user's guide

9. Modified from: Lijun Ma, Oliver Slattery, and Xiao Tang: Optical quantum memory based on electromagnetically induced transparency. Journal of Optics

10. Modified from: Rodney Loudon. The Quantum Theory of Light

11. L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller: Long-distance quantum communication with atomic ensembles and linear optics

12. Mine too

13. Modified from: L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller: Long-distance quantum communication with atomic ensembles and linear optics

14. Binomial distribution pmf.svg. (2023, November 23). *Wikimedia Commons*. Retrieved 00:24, May 14, 2025 from https://commons.wikimedia.org/w/index.php?title=File:Binomial_distribution_pmf.svg&oldid=824382031

15. L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller: Long-distance quantum communication with atomic ensembles and linear optics

16. Modified from: L.-M. Duan, M. Lukin, J. I. Cirac, and P. Zoller: Long-distance quantum communication with atomic ensembles and linear optics