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ABSTRACT

Ultracold atoms are used to study some of the most fundamental concepts in
quantum mechanics. To do this, scientists create specific conditions for the
atoms to exist in, which typically involves complex optical setups. Until re-
cently, it was extremely difficult to create an optical box potential, that is,
an optical trap that has areas with a constant potential surrounded by steep
walls. However, with the advancements in light manipulation using micro-

electromechanical devices and liquid crystals, it is now possible to have better
control over the light used to create the potential field. This new level of con-
trol allows more flexibility and precision when working with ultracold atoms.
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1 Introduction

In experiments with ultracold atoms, one can study the fundamental behaviour of different
quantum systems. The evolution of a quantum system is determined by the potential in
which it resides. To create such a system, a cloud of ultracold atoms is prepared and
placed in different types of electromagnetic and optical traps that create a potential, hold
the cloud in place, and cool the atoms down. One of the simplest potentials that can be
created is a box trap. A box trap is a potential with a flat bottom surrounded by steep
walls. Even though it is a simple potential, it allows for a wide range of experiments to be
conducted. By studying the behaviour of ultracold atoms in a box trap, we can gain insights
into a variety of quantum phenomena, such as quantum tunnelling and the behaviour of
interacting many-body systems [1]. The simplicity of the box trap potential makes it a
valuable tool for exploring fundamental quantum physics.

2 Creation of box potentials

In order to understand how a box trap potential is created, we first need to understand how
optical trapping works. To this end, we’ll explore a phenomenon called optical tweezing,
which occurs when the laser beam creates a gradient in the refractive index of the medium
around the particle. Furthermore, we will need to understand how light propagates in space.
Hence we will describe the simplest mode of laser beam propagation. We will take a look at
the potential made by a laser beam, followed by a description of how special lenses can be
used to make a box potential. Next, we will introduce the concept of Fourier optics, which
will serve as the backbone of a useful optical technique called spatial light modulation.
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2.1 Optical trapping

The potential created by light is directly related to the force that light exerts on a particle.
The force is caused by the change in momentum of a photon being scattered by the particle
[2]. We can start by describing an atom from which we scatter a single photon with wave
vector k. After the scattering process, we get a photon with a new wave vector k′. We
will assume that no energy was transferred, e.g. the atom was not excited to a higher state.
Consequently the following stands |k| = |k′|. In simpler terms, this means that the only
thing that changed after the scattering is the trajectory of the photon. We can describe the
momentum of the atom using its wave vector as patom = h̄katom. Using conservation of
momentum we can write patom = h̄(k−k′). Here we have assumed that the atom had zero
momentum before the scattering process. Force can be expressed as a time derivative of
momentum. For now, let us assume that the scattered photon will always travel along the
same path. The force exerted on the atom can be written as:

|F|= 2
P

c
sin

θ

2
. (1)

Here we have assumed that θ is the angle between the incident and scattered trajectory and
P is the optical power carried by the photons. Until now, we relied on the assumption that
trajectory of the incident photon as well as the scattering angle were identical for every
photon. This assumption is false since scattering directions are randomly distributed. The
distribution is dependent on the interaction between the photon and the scattering target.
It is still possible to find an average scattering direction, which depends on the trajectory
of the initial photon, its wavelength and the properties of the scattering target. The force
can then be expressed as a sum of all force contributions from all possible directions of the
incident photons.

Next, let us treat the atom as s a small spherical lens (see Fig. 1). We can now separate
two different scenarios just based on symmetry considerations.

A

B F||

F
F⊥

FA

FB

Figure 1: Beams A and B exert
force onto a particle. If the light
intensity field varies across the par-
ticle, beams A and B make differ-
ent contributions to the force result-
ing in a non-zero force perpendicu-
lar to the beam. Force parallel to the
beam is always present.

Let us first consider the case where the atom lies
in the center of the beam. In this case, we can as-
sume cylindrical symmetry. Consequently all con-
tributions to force that are perpendicular to the laser
beam will cancel out. Next, let us consider the case
where the atom is not in the center of the beam, and
we do not have cylindrical symmetry. In this case,
the force perpendicular to the beam may not cancel
out. The direction of the force depends depends on
the gradient of light intensity as well as the interac-
tion between the light and the particle. If the particle
causes light to converge after the scattering, the force
will point towards higher intensities, e.g. the particle
will move to the center of the beam. In case where
the scattering causes the light to never converge, the
force will point towards lower intensities, e.g. the
particle will move away from the beam. In case of
the ultracold atoms this simply means that we can make either an attractive or a reflective
potential. The interaction depends on the wavelength of the light in relation to the energy
levels of the selected atom.

2



Regardless of the symmetry and interaction between the particle and light, force par-
allel to the beam will always point in the direction of the beam. This can be explained by
looking at two limiting scenarios, first where all of the light reflects off the atom as if it
were a flat mirror and the second where all of the light is transmitted along the trajectory
of the incident light.

2.2 Light propagation

Since light is an electromagnetic wave, it can be described using the following equations,
which stem from the Maxwell’s equations:

1
c2

∂ 2E

∂ t2 −∇2E = 0,

1
c2

∂ 2B

∂ t2 −∇2B = 0.

(2)

Here c represents the speed of light in the medium and can be expressed as c=(µ0ε0εµ)−1/2 =
c0(εµ)−1/2. Here ε is the relative permittivity and µ is the relative permeability and c0

represents the speed of light in vacuum. We are mostly interested in results describing the
behaviour of light either in a vacuum or in air. Hence we can assume that c ≈ c0. The
simplest solution to Eq. (2) is simply a plane wave:

E(r, t) = E0eikr−iωt . (3)

Where k is the wave vector of the field and ω = |k|c is the angular frequency of the field.
Another important solution of Eq, 2 is the spherical wave:

E ∝
1

|r− r0|
eik|r−r0|. (4)

Here r0 is the location of the centre of the spherical wave and k is a scalar wave vector.
Since Eq. (2) are linear, any sum of both the plane waves and the spherical waves will also
be a valid solution.

2.2.1 Gaussian beams

To understand why laser light is insufficient when creating a box potential, it is important to
be able to describe a typical laser beam. Consequently, we will look into a Gaussian beam.
It is important to note that lasers often have different beam shapes, which can typically be
converted into a Gaussian beam using different methods, e.g. coupling into a single-mode
optical fiber. Furthermore, a Gaussian beam is the lowest order beam profile. We can start
by splitting the electric field into a rapidly and a slowly varying part as : [3]:

E = E0Ψ(r,z)eikz−iωt . (5)

Here we assumed that the field propagates along the z axis. We defined r as a vector in the
xy plane, and Ψ as a slowly varying modulation of the field. By inserting E into Eq. (2)
along with approximation ∂ 2Ψ/∂ z2 ≈ 0, we get the paraxial equation:

(
∂ 2

∂x2 +
∂ 2

∂y2 )Ψ+2ik
∂

∂ z
Ψ. (6)
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One of the solutions of the paraxial equations is a Gaussian beam

E(r,z, t) = E0
w0

w
eikz−iωte−r2/w2

eikr2/2Reiη(z), (7)

which describes a typical laser beam. Here we defined w2 = w2
0[1+(z/z0)

2], R = z[1+
(z0/z)2] and η(z) = arctan(z/z0). Here z0 and w0 are parameters of the shape of the beam
and are related through z0 = πw2

0λ−1. We are mostly interested in the intensity profile of
the beam, which can be written as:

I = |E(r,z, t)|2 = I0
w2

0

w2 e
−2 r2

w2 . (8)

A plot of intensity can be seen on Figure 2. We can see that the intensity is a Gaussian
function of r with width w(z). Parameter w0 simply tells us the width, when the beam is
the most narrow at z = 0.

Figure 2: Intensity profile of a Gaussian beam. Black line depicts width of the beam w as
a function of z. Coloured lines show intensity profiles at different depths. These are shown
on the plot on the right with matching colors.

2.2.2 The trapping potential of Gaussian beam

In chapter 2.1 we learned that the potential created by light is proportional to the intensity
of the light. In this section we will first take a look at why the potential generated by
a typical laser beam is harmonic. As stated previously a typical laser beam is simply a
Gaussian beam. Using Eq. (8) we can write the following approximation using a series
expansion of an exponential function:

Ud ∝ I = I0
w2

0

w2 e
−2 r2

w2 = I0

∞

∑
n=0

(

2
r2

w2

)n
1
n!

≈ I0

[

1+2
r2

w2

]

. (9)
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Figure 3: Comparison of intensity profile of a Gaussian beam with harmonic approximation
(light blue line) given in Eq. (9).

As can be seen in Figure 3, we can approximate the optical potential as some constant
potential together with a harmonic potential proportional to the square of the distance from
the centre of the beam. As stated in the beginning, this produces an uneven density of the
particles, since they all tend to move toward the centre of the beam. Hence it is impossible
to make a box potential using a simple Gaussian beam. It is important to note that other
sources such as gravity also contribute to the force on the particle.

2.3 Creating box potentials using axicons

An axicon is a type of lens which has a flat surface on one side and a conical surface on
the other side. It can be described purely in terms of geometric optics. As can be seen in
Figure 4a an axicon produces an area where an intensity profile is shaped like a ring, which
can serve as an optical trap if it is combined with auxiliary beams as can be seen in Figure
4b. When using a single axicon, the size of the ring will depend on the distance from the
axicon. By using a pair of axicons the size of the ring can be fixed to a desired dimension.
An important aspect to consider is the fact that when using axicons only cylindrical box
traps can be made. Often rectangular traps are preferred, which require more sophisticated
solutions. Here, we have to mention that when using axicons, the light is chosen such that
the interaction is repulsive. Henceforth the annular ring from the axicon and two auxiliary
beams are used to make the walls of the trap.
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(a) (b)

Figure 4: (a) Schematic diagram of two axicons. By shining a beam of light through an
axicon an annular ring is created, which expands with increasing distance. If two axicons
are placed opposing each other, a fixed sized ring can be created. This can be used to create
optical traps. (b) A diagram of a three dimensional optical trap using a light with a ring
shaped intensity profile and 2 auxiliary beams. Image taken from [1]

.

2.4 Spatial light modulation

Spatial light modulation (SLM) is a relatively simple technique, where we modulate the
intensity and the phase of an incident beam. The modulation can vary in space, and it is
typically done on a plane. When writing equations we will use superscript S to denote
that we are referring to a property in the SLM plane and superscript O in the image/optical
plane. To model the behaviour of the output light we will use the Huygens-Fresnel princi-
ple. This will allow us to describe a modulated electric field EO, which is a result of electric
field ES. This is done as an integral of spherical waves, as written in Eq. 4, resulting from
field ES[4]:

EO
M(r0) =

∫∫

1
iλ

ES
A(r)

eikR(r)

R(r)
dS. (10)

Here we have made an integral of all spherical waves caused by ES
A. R(r) is the distance

between r0 and r. To simplify we will assume that the SLM device sits on the xy-plane at
z = 0. We can rewrite ES as incident electric field ES

i (x,y) along with the modulation

ES(r) = AS(x,y)eiφ S(x,y)ES
i (x,y). (11)

Here we have used AS(x,y) to describe the amplitude modulation function and φ S(x,y) to
describe phase modulation. We can also define AS(x,y) such that it is equal to 0 outside
the SLM device, allowing us to use infinite boundaries on the integrals. Using paraxial
approximation R can be written as:

R =
√

(x− x′)2 +(y− y′)2 + z2 ≈ R0 −
xx′+ yy′

R0
. (12)

Here we have defined R2
0 = x2 + y2 + z2. Equation for EO(x,y,z) can now be rewritten as:

EO(x,y,z) =
1
iλ

eikR0

R0

∫ ∞

−∞

∫ ∞

−∞
AS(x′,y′)eiφ S(x′,y′)ES

i (x
′,y′)e−ikxx′/R0e−ikyy′/R0dx′dy′. (13)
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The image produced by SLM is a Fourier transform x′,y′ → kx,ky of the modulated incident
electric field, with kx = kx/R0 and ky = ky/R0. Based on this, an inverse Fourier transform

can be used to find the amplitude and the phase modulation AS(x,y)eiφ S(x,y) from the desired
electrical field.

2.4.1 The phase retrieval problem

We have seen that the potential field is proportional to the light intensity and that the electric
field on the SLM plane is an inverse Fourier transform of the electric field in the optical
trap plane. We also know that the intensity of light can be expressed as IO ∝ |EO|2. This
can be used to express the electric field as:

EO(x,y) ∝

√

IO(x,y)eiθ O(x,y). (14)

In this context, the electric field is represented as a scalar value because it is assumed
that the SLM process does not affect the polarization of the field. However, a coordinate-
dependent phase θ O(x,y) is introduced, which can be set arbitrarily without affecting the
resulting intensities IO while changing the desired electric field in the SLM plane ES.

The phase θ O(x,y) can be used to compensate for the limitations of the SLM device
by finding a new phase that creates an intensity field closer to the desired one. There
are several algorithms available for phase computation, such as the Gerchberg-Saxton [5]
algorithm or the MRAF algorithm [6].

The Gerchberg-Saxton algorithm and the MRAF algorithm are used to compute the
phase θ O(x,y) by iteratively updating the modulation of the electric field until the desired
intensity is achieved. These algorithms can be used to optimize the performance of the
SLM device by compensating for its limitations and producing more accurate intensity
distributions.

3 Spatial light modulators

Spatial light modulators are digitally-controlled devices used to manipulate the properties
of light, such as its amplitude, phase, and polarization, with high spatial resolution. They
consist of an array of tiny pixels that can be individually controlled to produce complex
light patterns. There are two options for spatial light modulators (SLMs): those using liq-
uid crystals (LC-SLM) and those using digital micromirror devices (DMD). Both types
of SLMs have their own benefits and drawbacks. One limitation of both LC-SLMs and
DMDs is that they are digitally controlled, which can limit the precision of the modula-
tion. The digital nature is seen both in discrete modulation steps as well as the physical
modulator, since they are made of small modulation elements, often referred to as pixels.
Furthermore this commonly reflects on the whole working procedure since it is beneficial
to describe the desired intensity as an array of pixels. The dimensions of the intensity pixel
array are often selected based on the properties of the SLM device. Additionally, neither
a single DMD nor LC-SLM can independently modulate both phase and amplitude at the
same time. Multiple SLM systems exist that can independently modulate both phase and
amplitude [7] , but they are complex and intricate. It is important to note that these systems
require careful calibration and alignment to ensure optimal performance.
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3.1 Digital micromirror device

A digital micromirror device (DMD) is a type of spatial light modulator that uses an array
of tiny mirrors to control the direction of reflected light as shown in Figure 5. Each mirror
can be individually tilted to reflect light either towards or away from the projection lens.
This is a significant drawback of DMDs, since the modulation is limited to two levels,
either on or off. Yet they are very fast, up to around 20kHz, and can be used to rapidly
switch between different light patterns, making them useful for applications that require
high-speed modulation of light [8].

Figure 5: A scanning electron microscope image of a DMD. The angle of individual mirrors
can be controlled digitally, which can be seen on the image. Image from Ref. [9].

3.2 Liquid crystal spatial modulators

A liquid crystal spatial light modulator (LC-SLM) is a type of SLM that uses a layer of
liquid crystal material to modulate the properties of light. The liquid crystal layer is sand-
wiched between two glass plates and is divided into a grid of tiny pixels, each of which can
be individually controlled.

The LC-SLM works by applying an electric field to the liquid crystal material, which
changes the orientation of the liquid crystal molecules and alters the properties of the light
passing through as can be seen on Figure 6. By varying the electric field applied to each
pixel, the LC-SLM can be used to create complex light patterns with high spatial resolution.

Figure 6: LC-SLM allow modulation of light phase, amplitude or polarization, which is
determined by different configurations of liquid crystals. The liquid crystal material is
located between two transparent electrodes which generate an electric field. This con-
sequently changes the behaviour of liquid crystal material between the electrodes which
modulates the incident light. Image from Ref. [10].
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4 SLM system

It is beneficial to describe the use of an SLM system inside by considering a specific exam-
ple. Regardless of whether an LC-SLM or a DMD device is used, the whole optical system
is in general almost the same. The differences can be seen in the algorithms that create
the modulation patterns. Hence we can take a look at a high-performance system used to
create optical lattices, etc. described in Ref. [8]. The setup uses a DMD device due to its
ability for fast modulation. As can be seen in Figure 7, this system, like many others, can
be divided into several distinct parts.

Figure 7: An example system for optical trapping of rubidium-87 using a DMD. Light
comes from a fiber collimator (FC). Polarization of light is then prepared using a wave
plate (WP), after which it is directed on to a DMD. Light exiting the DMD is then routed
through relay optics, which bring the light to the desired location as well as provide the
correct magnification. Using a polarizing beam splitter (PBS), the light can then be routed
to the trap, as well as to the CCD camera used for feedback. Yellow lines show the 780
nm light used to create the magneto-optical trap (MOT) along with imaging of the cloud.
Image from Ref. [8].

The first part involves preparing a beam of light with waveplates, polarizers, and lenses
to expand the beam so that it covers the SLM device adequately. Ideally the beam imping-
ing on the SLM device should be well collimated, which will reduce variation of phase and
will illuminate the SLM area as evenly as possible. This is necessary to achieve maximum
possible resolution. Some LC-SLM may also require proper polarization on the input side,
which requires additional polarization optics.

The second part is the SLM module, where different types of optics can be used to sep-
arate the incident and refracted beams. The type of SLM used will determine the necessary
optics.

The third part involves relay optics, which use lenses and mirrors to resize the output
image to the correct size of the trap and route the light to the correct place.
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Finally the light pattern is measured. The results are used for diagnostics and provide
feedback to the phase retrieval algorithm.

4.1 Example uses of box trap potentials

Finally we can quickly take a look at why it is so beneficial to have the ability to create
a box potential. Many experiments showcase these benefits (e.g. Ref [1]). For the sake
of simplicity, we can look at the measurement of sound waves along a cloud of ultracold
atoms inside a box potential, examples of which can be seen in Figure 8. This has been
used to study superfluidic phase transitions. Here the argument for a box potential is clear
since it ensures uniform density of the atoms, resulting in a uniform wave. In contrast, a
harmonic potential where both density of atoms and potential are not uniform would make
the acoustic waves much harder to observe since the speed of sound is dependent on the
density of atoms.

Studies of sound waves inside ultracold atom gasses can further be used to study super-
fluidics, etc. These form a subset of equilibrium experiments where the system is weakly
perturbed This can then be used to perform spectroscopic and transport measurements.
Furthermore experiments can be done with different levels of perturbation, which allow re-
search of different phenomena [1]. For example, non-equilibrium experiments, where the
system is perturbed in a much stronger fashion, can show formation of different domains
inside clouds of ultracold gases along with creation of vortices, etc.

(a) (b)

Figure 8: (a) Propagation of sound waves in a Fermi gas. Bottom picture shows deviations
from average optical density in the trap. Sound wave fronts can be clearly seen as vertical
lines. Taken from [1]. (b) Sound wave propagation in Bose gas. Left: image of the gas
inside the trap. The area above the dashed line was used to perturb the system. Right:
variation of number density of atoms in regards of time and y coordinate. Every point
depicts mean value of ∆n2D along x axis at a given y value. The dip is fitted with a triangle
function depicted as a solid black line. Both images in (b) are taken from [11]

5 Conclusion and outlook

Spatial light modulation (SLM) is a powerful and flexible technology used in physics ex-
periments to control and manipulate the behavior of atoms and other quantum systems. One
of the advantages of SLM is that it allows for the creation of precise and complex optical
potentials with arbitrary shapes, which can be used to explore a wide range of phenom-
ena in atomic physics, quantum information processing, and other areas. The development
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of SLM technologies, such as digital micromirror devices and liquid crystal modulators,
has made it possible to create high-resolution and affordable modules that can modulate
light with high resolution and fast refresh rates. One example of the application of SLM in
physics is the creation of box traps, which provide a potential with a flat bottom that en-
ables easier creation and interpretation of experiments. Additionally, SLMs allow creation
of potentials that are time dependent, which offers the ability to study time evolutions of
various quantum systems. With further advancements in SLM technologies, it is possible
to explore other fields such as atomtronics and quantum computing [12].
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