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Technological advances have led to the need for methods and systems that they
may seem unnecessary at first glance. Such is the requirement for a robust random
number generator (RNG). Its use cases span a wide range of applications. For ex-
ample, they play a key role in banking, telecommunications, datacenters and cryp-
tography where security is crucial. Use cases have also been found in various au-
tomotive technologies, different simulations, etc. Most frequently pseudo-random
number generators (PRNG) are used which rely on different mathematical opera-
tions to generate a sequence of numbers that are typically sufficiently random. Due
to its formulaic nature, there exists a way to predict the results no matter the partic-
ular algorithm. This is why true-random number generators (TRNG) are important.
These typically use specific hardware as a source of randomness. High-end ran-
dom number generators commonly use quantum phenomena as a fundamental
source of randomness, thus they are called Quantum Random Number Genera-
tors (QRNG). These are extremely important in quantum communications such as
quantum key distribution.
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1 Fundamental ideas

True random number generators (TRNG) typically consist of two parts, a source
of entropy and various post-processing methods. Typical entropy sources are e.g.
voltage noise, metastable ring oscillators, internal workings of computer hardware,
etc. These commonly use processes that are hard to predict as a source of ran-
domness but can be susceptible to external tampering. For example, a change in
the temperature of a TRNG can cause a bias in the outgoing stream of numbers.

A more robust source of randomness are different quantum phenomena. Ide-
ally, such a device outputs only readings of the observed quantum system. In
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reality, this is almost impossible, as we need to use different classical devices to
set up and read from our system, all of which contribute to thermal noise in the
result.

Almost every TRNG has a way of post-processing the output of the entropy
source. Output is typically a number stream that adheres to certain rules, defined
by algorithms that use said random numbers. Such a system can e.g. remove
any biases, compensate for unwanted number distributions or even out the output
bitrate. In the case of a QRNG, it should primarily evaluate and remove the thermal
contribution from the quantum entropy source. Methods used in post-processing
are selected based on the entropy source and the requirements of the number
generator. Hence we won’t be looking into post-processing methods or QRNGs
that rely heavily on them.

There are typically two main characteristics used to describe any sort of RNG.
The first is bitrate which simply tells us how many bits of data a device generates
every second. The second property is randomness, which is harder to quantify.
For example, we can take a look at a sequence of random numbers, that is finite in
length. It’s impossible to guarantee that this number is entirely unpredictable, but
it may pass any randomness test. Thus there are many different tests to quantify
different aspects of quantum number generators like their distributions and unpre-
dictability. Furthermore, most of the tests can be passed by many of TRNGs or
even PRNGs.

2 Random number analysis

Random number analysis is an important aspect when creating and designing a
generator. There are several tests that attempt to analyse different properties of
a generated string of numbers [1, 2]. Using these tests we can both analyse ran-
domness and check whether random numbers conform to rules posed by latter
algorithms. It is very important to note that testing random numbers can prove that
data isn’t random, but it cannot show or prove that data is random. This also im-
plies that it is crucial to understand the methods and principles used in an RNG. For
example, a finite length of random numbers from a PRNG can appear as random,
but a larger string of numbers from the same generator may not be random.

2.1 Statistical prerequisite testing

These are statistical tests that assess certain properties, such as bias, serial corre-
lation coefficients and more. Using these we’re testing whether a series of random
numbers conform to their requirement rather than their randomness.

2.1.1 χ2 Test

To check whether a string of numbers xi is biased, we have to perform a χ2 test.
The reasoning behind this is that the mean value x̄ can also contain some amount
of random walk. To calculate the value of χ2 for a string of random numbers xi
between 0 and k− 1, we have to count how many times a number has appeared in
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the sequence. We’ll denote this as Si for number i. χ2 can now be calculated as:

χ2 =

k−1∑
i=0

(
Si −

k

n

)2

. (1)

Calculated χ2 follows the χ2(n − 1) statistic, which allows us to determine the
certainty, by which the string of numbers is unbiased.

2.1.2 Serial correlation coefficient

Another important metric for QRNGs and any RNG in general is the serial cor-
relation coefficient (SCC). As we’ll see, consecutive measurements can exhibit a
correlation, which ruins the randomness of the generated string. SCC is a spe-
cial case of correlation as it measures just the Lag-1 autocorrelation, and can be
calculated as:
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The result is bounded as−1 < SCC < 1. A negative value of SCC means that a bit
is more likely to be the opposite value of the previous bit. When the value of SCC
is positive, it means that a bit is more likely to be the same value as the previous
bit. Therefore a sequence of good random numbers should have a value of SCC
as close as possible to 0.

2.2 Randomness tests

Previously we have established that it is impossible to certify that a string of num-
bers is truly random. Because of this there are many tests used to evaluate the
randomness or unpredictability of a sequence of numbers.

2.2.1 Shannon Entropy estimation

Another way of looking at random numbers is through the amount of information
that is attached to them. Shannon entropy [3] estimates the average entropy of an
output since it takes into account every possible outcome. We can define it for a
source X which produces n different outcomes x1, x2, ..., xn, each with probability
P (xi), the Shannon entropy H(X) is

H(X) = −
n∑

i=1

P (xi) log(P (xi)). (3)

If we calculate log2 instead of log, the output will be expressed in terms of the
number of bits of information. In simpler terms, we can use this to evaluate a
number of random bits extracted for a single output from an entropy source. This
can be a useful tool for the optimisation of a system, where parameters of the
output distribution can be controlled. For example, by evaluating a one-bit system,
we can write the probability of 0 as P0 and the probability of 1 as 1 − P0. We can
now estimate the number of output bits if a bias is present as:

H(X) = −P0 log2(P0)− (1− P0) log2(1− P0). (4)
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Maximum H(x) is as expected, at P0 = 0.5, which corresponds to unbiased output.
We can also see that a presence of bias can quickly lower the amount of generated
bits.

2.2.2 Model Equivalence Testing

Typically a TRNG device is constructed on a system whose model is known. This
permits a simulation of a TRNG, which consequently allows us to perform a theoret-
ical analysis. A real-world device can then be compared and tested for equivalence.
If the behaviour is equal or at least similar enough it is safe to assume that the data
generated is random. This is especially true in the case of QRNGs since random-
ness from a QRNG can not be distinguished from a typical TRNG or even a PRNG
[4].

3 Quantum entropy source

Every QRNG relies on quantum phenomena like a superposition of states or uncer-
tainties of variables. Ideally, a QRNGs output string should be independent of any
auxiliary components or sub-systems that are used inside a QRNG and it should
only depend on the properties of the governing quantum system.

We’ll take a look at two different approaches based on relatively simple princi-
ples which are usually used as a source of quantum randomness in generators.

3.1 Qubit approach

Qubit is essentially a two-level quantum-mechanical system, defined as a superpo-
sition of two states. It can be written as a combination of |0〉 and |1〉 states along
with complex probability amplitudes α and β:

|ψ〉 = α |0〉+ β |1〉 , (5)

where |α|2 + |β|2 = 1. Only when measured, our system will assume one of two
possible states. Furthermore, the probability for the system to assume state |0〉 is
|α|2. Similar can be said for |1〉. E.g., the electron spin in the famous Stern-Gerlach
experiment can be regarded as a qubit.
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3.1.1 Photonic implementation

LED or

Laser

ATT PBS SPD

SPD

1

0

...

Figure 1: Schematic of a QRNG using a photonic qubit approach. The photon is
initially in a superposition of horizontal (H) and vertical (V) polarization. Polarising
beam splitter (PBS) separates photons based on their polarisation. Photons are
detected using two SPDs, which is used for random bit generation. Laser or an LED
can be used as a source of photons with appropriate attenuation (ATT). Adapted
from [5].

The polarization of a photon can be interpreted as a quantum state. This means,
that we can use simple optics to separate photons based on their polarization.
Both polarizations can then be assigned a logical value of the output bit. As can be
seen in Figure 1 we can use a Polarizing Beam Splitter (PBS) to separate photons
based on their polarization. Two Single-Photon Detectors (SPD) are used to detect
photons along both possible paths. Ideally, the number of detected events per time
interval should be equal on both SPDs. This is achieved by using polarizers before
the PBS.

Until this point, we haven’t yet looked at photon sources. We used single pho-
tons to describe the inner workings of our systems. Using single-photon sources is
unnecessary as these devices are expensive state-of-art equipment. A simple low
power LED or laser suffices as a photon source. The output light must be attenu-
ated significantly. For example, a green 1mW laser will output approximately 3·1016

photons every second, but only 1− 10 · 106/s are required. Usually driving a LED
or laser in pulsed mode and using strong attenuators suffices to create a series
of single photons. which are usually used as a source of quantum randomness in
generators. A key aspect when choosing a light source is its coherence time. It is
crucial, that the coherence time of light is significantly shorter than the mean time
between counts to avoid any correlation in properties from consecutive photons.

Lastly, we need to look at SPDs. Multiple devices can be used to detect sin-
gle photons such as single-photon avalanche diodes (SPAD), photomultiplier tubes
(PMT) or even superconducting nanowire single-photon detectors (SNSPD or SSPD).
There are multiple factors when choosing between SPDs, which are most com-
monly cost, size and capabilities. Thus PMTs and SPADs are commonly used when
designing and making a QRNG. These are typically small and relatively cheap. An-
other important characteristic is the maximum count rate, which is also the main
limiting factor of the maximum output bitrate of these types of QRNGs. SPDs also
contribute some amount of noise, typically referred to as dark count. These are
simply events where an SPD outputs a signal without detecting a photon. They can
be ignored to some degree as they are of quantum origin and can be in some cases
also used as a source of quantum randomness. Another important characteristic
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of an SPD is their quantum efficiency, which is the measure of the effectiveness of
a device to convert incident photons into counts. This parameter differs for every
device and is also subject to ageing. Too large differences between sensors can
cause skews or biases in the outputs. Attention must also be paid to phenomena
like afterpulsing where an SPD can report a count shortly after a photon detection.
Such outputs are heavily correlated and need to be taken into account since they
strongly impact the performance of a QRNG. Thus many photodetectors employ
dead times, which disable the detector for a certain amount of time after a count.

As previously mentioned, the output bitrate is limited by the capability of used
detectors. Present fastest devices can detect a photon approximately every few 10-
100ns [6], which corresponds to about 10Mbps. This has been achieved by multiple
teams [7, 8]. Compared to other QRNGs, devices using the qubit approach are
comparatively slow. For example, QRNGs based on temporal mode, which we will
look at next, achieved rates on the order of 100Mbps. The fastest achieved rates
were on the order of a few 10Gbps while using phase noise of light as a source of
randomness [5]. Due to constraints, that arise from SPDs, an approach, that does
not rely on detection rate alone becomes crucial.

Another issue arises from using different optical paths for each photon polar-
ization. These can differ in length, alignment and properties of individual optical
components, etc. This will effectively cause the paths to have slightly different
transmittances. We also have to be mindful of the differences between the two
SPDs. All of this results in a slight bias in the output. It is possible to compensate
for this bias by adjusting the polarizer that sits before the PBS or changing the work-
ing parameters of SPD such as bias voltage in a SPAD. This is a time-consuming
process, as the whole system has to be regularly monitored and adjusted.

3.2 Temporal approach

Using quantum states as a source of randomness is a powerful concept but can be
rather difficult to execute in the real world. Realistically it is impossible to remove
any kind of bias from such a device since the adjustments have to be extremely ac-
curate. Furthermore, we have to account for any biases that arise from the ageing
of SPDs and other components. By simplifying the physical setup as much as pos-
sible and introducing extraction methods that compare successive measurements,
we can vastly improve the system. It also implies that a new source of randomness
is required. So far we haven’t looked at the uncertainty of position or time.

By doing this we’ll move attention from the quantum properties of a single pho-
ton to the statistical properties of a stream of photons. One approach is to use the
directional randomness in the emitted photon. Such devices have been made using
arrays of SPDs [9]. These systems require a lot of post-processing to compensate
for differences between individual SPDs in the array and non-uniform light intensity
across the array. Almost all of these are specific to the setup that is used.

Another approach is to use randomness in creation and detection times. This
approach requires just a single SPD and a light source. By doing this, we have also
guaranteed that every photon has the same chance of being detected. A drawback
is a requirement for more complex methods used to extract randomness.
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3.2.1 Implementation
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Figure 2: Schematic of a QRNG using a temporal approach. Random bits are
generated from photon arrival times. Laser or an LED with significant attenuation
(ATT), can be used as a source of photons, which are detected by the single-photon
detector (SPD). Adapted from [5].

The hardware of QRNG based on the temporal approach can be relatively simple.
Most of the work is done by electronics, which extract random numbers from photon
detection times. This is why such a device can be constructed only from a light
source and an SPD. The light source needs to be weak enough so that the SPD
doesn’t get saturated. Thus the maximum detection rate is usually similar to the
qubit approach.

The origin of the randomness of time intervals between photon counts is the
quantum nature of the photon source and the SPD. The choice of a source depends
mostly on the required properties of the emitted light. Additionally, it is beneficial
for a source to allow simple output power regulation. Thus a laser or an LED is
the preferred source. Choice of a light source also affects the distribution of time
intervals between counts, which is crucial both in terms of output and operation.
Coherent laser light will have a Poissonian distribution of time intervals, while an
LED will have a sub-Poissonian distribution. This implies that photons emitted from
an LED will be more probable of being bunched together [10]. This is one of the
reasons, why some prefer the usage of laser instead of an LED [11].

Random bit extraction can be done using multiple methods, each with its ben-
efits and flaws. Since most of it is done through digital devices, we can establish
a couple of theoretical capabilities of the temporal approach. Let’s assume that
the mean time between counts is t̄. This value is subject to the output power of
the source and is limited solely by the capability of SPD. As we have established
before, we can expect numbers around 100ns. With current digital devices, it is
possible to achieve time resolution δt in the order of 100ps or even less [5]. It is
important to keep in mind that time resolution is also subject to the precision of
the whole circuit, not just the digitizer. The number of output bits per detection
can be estimated using (3). Using Shannon entropy for equal probabilities we get
an estimate of log2(t̄/δt). We have to keep in mind that this number is an upper
estimate since the delays between counts aren’t equally probable. With previously
mentioned numbers, we can estimate the maximum achievable output bitrate to be
log2(1000) · 10Mbps ≈ 100Mbps.

3.2.2 Clocked method

The easiest approach to randomness extraction is to measure the time intervals
between the detections. Issues arise as the output will have Poissonian-like distri-
bution [10]. This requires further postprocessing. Another approach is to compare
two consecutive delays ∆ti and ∆ti+1. A binary 1 is generated if ∆ti > ∆ti+1 and
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a 0 when ∆ti < ∆ti+1. In an ideal case, this produces a perfectly balanced output,
at a bit rate equal to or lower than the detection rate. In reality, we have to account
for a few different factors. Firstly the time measurement is digital and thus discrete.
Therefore exists a non-zero chance that ∆ti = ∆ti+1. When this occurs the output
bit should be omitted. Secondly, if the clock signal is constant, the counted delays
will be correlated between consecutive counts. This is a result of the fact that we
are summing up the remainder of the previous clock cycle and the current one.
This can be more clearly seen in Figure 3. The issue can be solved by increasing
the clock frequency or by using a restartable clock [12]. It is important to mention
that this issue is also applicable to systems where we’re not comparing measured
delays.

Δt1 Δt2 Δt3 Δt4
SPD

output

n1=3 n2=1 n3=2 n4=1

n'1=2 n'2=2 n'3=1 n'4=1

Clock

Restartable

clock

Figure 3: Comparison of time measurement using a regular clock signal and a
restartable clock. We can see that with normal clock outputs are correlated since
we’re summing up the remainder of a cycle from a previous count with the present
count. The issue is solved by restarting the clock when a photon is detected, or by
increasing the clock frequency. Adapted from [12].

3.2.3 Pulsed method

Another approach is by pulsing the light source for a fixed amount of time so that
the probability of detecting a single photon is small. Therefore the source of ran-
domness is the probability that during a pulse a photon is created and detected.
The hardware setup is the same as the one described at the beginning of this sec-
tion with the key difference being that the light source is pulsed. We can create an
unbiased output by comparing consecutive repetitions. This is achieved by creating
a group of pulses, which contains two subgroups of identical lengths. We assign a
bit to each subgroup, which tells us whether a photon was detected or not as can
be seen in Figure 4. There are four possible outcomes: 00, 01, 10 and 11. In the
case of 00 and 11 nothing is written to the output. A logical 0 is output for a 01
and a 1 for a 10, or vice-versa [13]. Since the probability of photon detection is
equivalent between groups, we can safely assume that both 01 and 10 outcomes
are equally probable.
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Figure 4: Diagram of a pulsed QRNG. The light source is driven by short drive
pulses. A group comprises of k pulses. Every group has two equal length sub-
groups, each with their corresponding bit. If a photon is detected in a subgroup
a 1 is assigned to its bit. When a 10 is detected, a 1 is output and when a 01 is
detected a 0 is output. In the case of a 00 or a 11 nothing is output. Adapted from
[13].

4 Conclusion

Quantum random number generators are and are becoming even more important.
Together with vastly increasing demand in cybersecurity alongside computation
capabilities might make them play a key role in everyday life. As we have seen,
these devices use relatively simple physics, from which we extract randomness.
Even though the theory behind the operation is simple, practical execution can
prove to be very difficult. This is amplified by the fact that QRNGs are some of
the highest-end random number generators in terms of the randomness of their
output, thus the requirements can be very strict. Using various methods presence
of biases, output number distributions and classical contributions can be removed.
Upon simple concepts, scientists have built increasingly capable QRNGs.
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