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Abstract

Optical tweezers are tightly focused optical dipole traps with controllable trap-
ping position. First, we present an experimental protocol for creating a defect-free
array of single rubidium atoms held in optical tweezers. Then, we present the prop-
erties and interactions of Rydberg states. We describe how Rydberg interactions
in an array of cold atoms make a controllable and flexible system that is used as
a quantum simulator. Finally, we discuss the observed phase diagram and phase
transitions.
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1 Introduction
Quantum physics introduces concepts like superposition and entanglement that
quantum technologies utilize to perform tasks that are classically impossible or
hard to do. Quantum technologies include quantum computing, communication,
simulation, sensing and metrology. For most kinds of quantum technologies we
need quantum systems that consist of several well-controlled elements that interact
with each other [1]. The purpose of quantum simulation is to use a synthetic
quantum system to study a model Hamiltonian of a real-world physical problem,
that is hard to solve with classical computing [2]. One of the platforms for quantum
simulation are neutral atoms at very low temperatures. The atoms are controlled
via optical and electromagnetic methods, particularly through the interaction of
Rydberg states. The advantage of cold neutral atoms is that they are inherently
identical, and it is easy to scale up the systems to large numbers of atoms [2].

In this seminar, we focus on quantum simulations based on atoms held in op-
tical tweezers. In the first section, we present dipole-trapping of atoms and how
optical tweezers can be used to create arrays of atoms. Next, we present Rydberg
atoms as a state with strong and controllable interactions. Lastly, we present the
experiments from Ref. [3], were they used an array of neutral atoms with Ryd-
berg excitations as a quantum simulator to probe the many-body dynamics of the
engineered Hamiltonian.
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2 Atoms in optical tweezers
2.1 Dipole traps
Atoms can be trapped using optical dipole traps. Those are focused beams of
far off-resonant light that create an attracting potential for the atoms. Because
the light is off-resonant, optical excitations do not play a role in this case. The
light intensity and detuning is chosen such that the radiation force due to photon
scattering is negligible compared to the dipole force.

Consider an atom in a laser beam with the frequency ω, polarization ê and
amplitude E. The electric field E(r, t) = êE exp(−iωt) + c. c. induces an atomic
dipole moment p(r, t) = êp exp(−iωt)+c. c.. The amplitude of the dipole moment
p = αE is proportional to the electric field amplitude E, where α is the complex
polarizability that is a function of ω [4]. We can express the interaction potential
of the induced dipole moment as

Udip = −1
2 〈pE〉 = − 1

2ε0c
Re(α)I, (1)

where we took the time average over the rapid oscillations of the field and intro-
duced the field intensity as I = 2ε0c|E|2. The dipole force due to this potential is
[4]

Fdip(r) = −∇Udip(r) = 1
2ε0c

Re(α)∇I(r). (2)

The atomic polarizability α can be calculated using Lorentz’s model of a classical
oscillator as

α = 6πε0c3 Γ/ω2
0

ω2
0 − ω2 − i(ω3/ω2

0)Γ , (3)

where we introduce the resonance frequency ω0 and the damping parameter Γ [4].
This model is in agreement with the quantum description, if the detuning is large
enough that the scattering rate is low and there is no saturation effects [4]. In most
cases, the driving frequency is tuned relatively close to resonance, such that the
detuning ∆ = ω−ω0 is small compared to the resonance frequency ω0, allowing us
to use the rotating-wave approximation. In this case, the expression for the dipole
potential simplifies to [4]

Udip(r) = 3πc2

2ω3
0

Γ
∆I(r). (4)

We can see that the sign of detuning significantly impacts the effect of the light
on the atoms. If the frequency is below the atomic resonance (∆ < 0), we say that
is it red detuned, and the interaction attracts atoms to points with higher light
intensity. However, if the frequency is above resonance (∆ > 0), we say that it is
blue detuned and the interaction is repulsive, pushing atoms away from the light
field [4].

2.2 Optical tweezers
Optical tweezers are tightly focused dipole traps. The position and the intensity is
controlled for each trap individually. An array of optical tweezers can be created
from a laser beam with an acousto-optic deflector (AOD) and a set of lenses. An
example of such a setup is shown in Figure 1. We can see that a laser beam is
separated into multiple deflected beams with an AOD. The beams then go through
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two lenses in a 1:1 telescope configuration. Then the beams are focused inside
the vacuum cell with a microscope objective with a high numerical aperture (NA).
The high NA is necessary to create very tightly focused traps. If the trap is small
enough, the collisional blockade effect ensures that there can be no more than one
single atom in each trap [5, 6]. This is a consequence of a high probability of two-
body decay relatively to the loading rate [5]. Two body-decay refers to an atom
leaving the trap due to a collision with another atom inside the trap.
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Figure 1: An experimental setup for the preparation of a defect-free atom array.
An array of optical tweezers in the vacuum chamber is created with a combination
of an AOD, a 1:1 telescope and a high-NA microscope objective. An identical
microscope objective on the other side of the vacuum cell is used to image the focal
plane of the tweezers. The CCD camera is used to image the tweezers’ positions
and the EMCCD for the fluorescence imaging. The positions of the atoms are fed
back into the AOD in order to re-arrange the trap positions to form a defect-free
array. Adapted from Ref. [7].

An AOD is a device that utilizes the acousto-optic effect in a crystal to deflect
light. The angle of diffraction is determined by the frequency of the acoustic wave,
and the intensity of the diffracted beam depends on the amplitude of the acoustic
wave. Figure 2 schematically shows acousto-optic deflection. A piezoelectic trans-
ducer transforms the control electrical signal into acoustic waves in the crystal, and
the beam of light that goes through the crystal is deflected due to Bragg scattering
on the acoustic wave [8].

To create optical tweezers ,the AOD is simultaneously driven with multiple
frequencies (i. e. multitone driving). Each frequency creates a diffracted beam at
its corresponding angle. The tweezer positions can be smoothly moved by sweeping
the driving frequency. To turn off or change the intensity of a particular tweezer
the amplitude of that frequency component of the driving signal is adjusted [7].

2.3 Preparation of defect-free atom arrays
This section describes the preparation of arrays of atoms held in optical tweezers as
it is described in Refs. [3] and [7]. The experimental setup is schematically shown
in Figure 1 and the procedure in Figure 3.

First, 87Rb atoms in a vacuum cell are laser-cooled in an magneto-optical trap
(MOT). An array of optical tweezers is also turned on during this time. Then, the
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Figure 2: An acousto-optic deflector. The diffraction angle depends on the fre-
quency of the acoustic wave in the crystal. Adapted from Ref. [8].

T
im

e

Position

∆ν

Figure 3: The procedure for creating a defect-free array of atoms. First, the atoms
are captured from an MOT with optical tweezers, and the atom positions are
imaged. Then, the empty traps are turned off. In the third step, the frequencies
corresponding to the filled traps are swept to rearrange the traps into a regular
array of filled traps. Adapted from Ref. [7].

MOT is turned off instantaneously and the atomic cloud is left to disperse before
fluorescence imaging is used to see which traps are filled with an atom and which
are not. The loading of atoms from an MOT into a trap is probabilistic with an
efficiency of about 0.6 in this experimental setup [7]. The efficiency depends on the
trap intensities and sizes. After the imaging, the empty traps are turned off, and the
rest are moved to form a defect-free array of atoms or any other selected pattern.
808-nm light is used for the tweezers, and they have a beam waist of approximately
0.9 µm and the trap depth is approximately 0.9 mK [3]. The spacing between the
traps can range from a few micrometers to tens of micrometers [3].

Similarly, it is possible to create an arbitrary pattern of atoms in optical tweezers
in 2D [9], and even in 3D [10]. The flexibility of the tweezer positions is the main
advantage of this method over optical lattices that can similarly be used to create
arrays of dipole traps. In that case, the traps are the nodes of an interference
pattern of two laser beams [1].
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3 Rydberg atoms
3.1 Basic properties of Rydberg atoms
Rydberg atoms are atoms in states with a high principal quantum number n, this
means, that the valence electron is highly excited [2, 11]. These states have ex-
aggerated properties compared to atoms in the ground state. In particular, they
have large dipole moments and strong interactions, making them suitable for many
experiments.

Rydberg atoms are very big and have large polarizabilities, leading to large
collisional cross sections and long interaction times. The binding energy is very
small and the radiative lifetime is very long. This can be understood in the classical
electrodynamics picture, where an electron further from the nucleus experiences
smaller accelerations and therefore a lower radiation rate [2]. Additionally, Rydberg
atoms have big dipole matrix elements that are very sensitive to electric fields [12].

3.2 Rydberg state excitation and Rabi oscillations
Consider a two-level system with a ground state |g〉 and an excited Rydberg state
|r〉, with the energy difference ~ω0. A beam of light at frequency ω = ω0 + ∆,
where ∆ is the detuning, drives transitions between the two levels in a process
called Rabi oscillations. The state of the system oscillates between the two states
with the Rabi frequency Ω [13]. The Rabi frequency is a function of the intensity
of the beam. The detuning ∆ affects the amplitude of the oscillations. Assume we
start with an atom in the ground state |g〉. On resonance (∆ = 0), the probability
of finding the atom in the excited state |r〉 periodically reaches 1. Off-resonance,
the transition to |r〉 is never complete, since the amplitude of Rabi oscillations falls
with |∆|.

In the experiment described in Ref. [3], 87Rb atoms are used for quantum
simulation. Each of the atoms is effectively a two-level system, with a ground state
|g〉 and an excited Rydberg state |r〉, but the transition between the states is realized
with a two photon process. It uses an intermediate state |e〉 as it is schematically
shown in Figure 4a. A blue 420-nm laser is used for the |g〉 → |e〉 transition, with
a detuning δ and a Rabi frequency ΩB . For the |e〉 → |r〉 transition, an infrared
1013-nm laser is used with a detuning ∆ and a Rabi frequency ΩR. Because the
detuning δ is much larger than ΩB and ΩR, the dynamics can be simplified to a
two-level transition |g〉 → |r〉 with an effective Rabi frequency Ω = ΩRΩB/(2δ) [3].

3.3 Dipole-dipole interactions
To understand dipole-dipole interactions between Rydberg atoms, we can describe
a Rydberg atom as an electric dipole p = −ed, where d is the relative displacement
of the excited electron from the core. The dipole-dipole interaction between two
such atoms is

Vdd = e2

4πε0
d1 · d2 − 3(d1 · eR)(d2 · eR)

R3 , (5)

where eR is the unit vector along the relative coordinate R between the two atoms,
and R = |R| is the interatomic distance [2, 12].

Consider a case of two atoms with a single transition channel |r1〉 + |r2〉 →
|r′1〉 + |r′2〉 between (Rydberg) states. It can be shown that the eigenvalues of the
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Figure 4: (a) Two photon transition between the ground state and the Rydberg
state. Adapted from Ref. [3]. (b) Rydberg blockade results from the energy shift
of the doubly-excited state due to the dipole-dipole interaction between Rydberg
atoms. If the atoms are closer than Rb, the excitation of a second atom is off-
resonance and therefore greatly suppressed. Adapted from Ref. [2].

Hamiltonian of this system are

E± = δF

2 ±
1
2

√
δ2

F + 4V 2, (6)

where δF = (Er′
1

+Er′
2
)− (Er1 +Er2) is the difference between the energies of the

initial and final states. δF is also known as the Förster defect [2]. V = C3/R
3 is

the interaction strength for the transition, where C3 is the anisotropic interaction
coefficient, which is a function of the orientation of the two dipoles [2]. We define
the interaction induced energy shift as ∆E± = E±(R) − E±(R → ∞). We are
interested in the case, where |r1〉 and |r2〉 are ground states and |r′1〉 and |r′2〉 are
Rydberg states. This means that the energy difference is large, δF � V (R). It can
be shown that, in this limit, the energy shift is ∆E− ≈ −C6/R

6 for |r1r2〉, and
∆E+ ≈ C6/R

6 for |r′1r′2〉, where C6 = C2
3/δF . In this regime, the interaction is

called Van der Waals interaction, because it is proportional to R−6 [2].

3.4 Rydberg blockade
Because of the strong dipole-dipole interaction between Rydberg atoms, the exci-
tation to Rydberg states exhibits the behavior that only one atom within a certain
volume can be excited. This is called a Rydberg blockade. It occurs because the
excited atom shifts the energy of the surrounding atoms, moving the excitation
frequency further from resonance [2].

Consider the two atom case illustrated in Figure 4b. The resonant light can
excite the atoms into a single-atom excited state |ψ+〉. The energy of the doubly-
excited state is shifted due to the dipole-dipole Van der Waals interaction that we
described in section 3.3. The interaction is a function of the interatomic distance
R. If R is smaller that the Rydberg radius Rb, the light is too far from the shifted
resonance, and it can not excite the second atom. The Rydberg radius is defined
as the radius where the interaction is equal to the Rabi frequency, ∆E(Rb) = Ω
[2, 3]. In the experiment in Ref. [3] the Rydberg radius was 9 µm.
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Figure 5: Atoms in optical tweezers and the two beams that induce Rabi oscilla-
tions. Adapted from Ref. [3].

Consider N atoms in a volume with the radius Rb. A state where all of the
atoms within the volume share a single excitation is

|W 〉 = 1√
N

N∑
i=1
|g1g2 . . . ri . . . gN 〉, (7)

a superposition of states where one of the atoms is in the excited state. The Rabi
frequency between the ground state |G〉 = |g1g2 . . . gN 〉 and |W 〉 is ΩN =

√
NΩ,

where Ω is the Rabi frequency for a single atom [2, 12]. This can be intuitively
understood considering that the probability of excitation increases because any of
the N atoms can be excited.

4 Quantum simulator
In the previous sections, we described how one can prepare a defect-free array of
atoms in optical tweezers, how these atoms can be excited into Rydberg states and
the interaction between them. This is a system that makes an ideal platform for
studying quantum many-body dynamics because of its controllability and flexibility.
By observing the response of the physical system, we can learn about the properties
of the engineered Hamiltonian.

We will focus on Ref. [3], where many-body dynamics was probed on a 51-
atom simulator. They used rubidium atoms to create a one dimensional array of
51 atoms. By changing the spacing between the atoms, the detuning of the driving
lasers, and the Rabi frequency, different properties of the studied system could be
observed.

4.1 Experiment
In section 2.3 we described the experimental setup and procedure for creating
defect-free atom arrays. Here, we describe the subsequent steps in the quantum
simulation experiment.

Figure 5 shows atoms trapped in optical tweezers and the two laser beams
necessary for Rydberg state excitation described in section 3.2. Figure 6 shows the
four steps of the experiment. First, the atoms are cooled in the MOT and loaded
into optical tweezers. Then, the atoms are arranged into regular arrays and imaged
to ensure that the traps are still occupied. Afterwards the system is left to evolve
for a certain time under the influence of the driving laser beams and without optical
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Figure 6: Experimental prodecure: the atoms are loaded from an MOT into optical
tweezers, the tweezers are rearranged, then the system is left to evolve under the
influence of the driving beams, and lastly, the final state is detected. In this case,
five independent systems of 7 atoms were studied. Adapted from Ref. [3].

tweezers. Lastly, the tweezers are turned back on, recapturing only the atoms that
are still in the ground state. The final occupations are detected with fluorescence
imaging.

The time of the free evolution of the system is limited by the thermal motion
of the atoms. When the tweezers are turned off, the atoms move freely and will
move out of the reach of the tweezers if the evolution time is too long. Only atoms
in the ground state are recaptured, because the tweezer’s potential is repulsive
(anti-trapping) for the Rydberg state.

4.2 Hamiltonian
The dynamics of the system is described by the Hamiltonian

H

~
=

∑
i

1
2Ωiσ

i
x −

∑
i

∆ini +
∑
i<j

Vijninj . (8)

The first term describes the coupling between the ground state and the Rydberg
state through Rabi oscillations with the frequency Ωi, where σi

x = |gi〉〈ri|+ |ri〉〈gi|,
where i indicates the position in the array. The second term comes from the energy
of the excited state in the rotating-wave approximation. It is governed by the
detuning ∆i from the transition. ni = |ri〉〈ri| is the operator of the number of atoms
in the Rydberg state at position i. The last term describes the interaction between
atoms at different positions. The interaction strength Vij is controlled through
the distance between atoms. In the experiment, the coupling was homogeneous
(Ωi = Ω, ∆i = ∆). In this case, the Hamiltionian is

H

~
= Ω

∑
i

1
2σ

i
x −∆

∑
i

ni +
∑
i<j

Vijninj (9)

and resembles the Ising model for spin-1/2 particles [3].

4.3 Phase diagram
The ground state of the Hamiltonian in equation (9) depends on the parameters Ω,
∆ and Vi,j . If ∆/Ω is negative, the ground state is |G〉, i. e. all atoms in |g〉. If we
increase ∆/Ω, the number of atoms in the Rydberg state |r〉 will increase. These
atoms are regularly distributed across the array, forming a ’Rydberg crystal’ [3].
Depending on the interaction range, these crystals exhibit different translational
symmetries.
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Figure 7: Phase diagram of a one-dimensional array. For lower ∆/Ω the ground
state consist of all atoms in |g〉. For higher ∆/Ω, we get crystal phases with
different translational symmetries depending on the interaction range. Black circles
represent Rydberg states and white circles represent atoms in the ground state.
Adapted from Ref. [3].

For example, consider the case when Ω is much smaller that the interaction be-
tween neighboring atoms Vi,i+1, but much larger then between next-nearest neigh-
bors Vi,i+2. This means that we have Rydberg blockade for neighboring sites, but
the next-nearest neighbor interaction is negligible. This results in a ground state
where every other atom is in the Rydberg state. This crystal has the Z2 transla-
tional symmetry. Similarly, if Vi,i+1, Vi,i+2 � Ω� Vi,i+3, the ground state has the
Z3-symmetry, and every third atom is in the Rydberg state, and so on for higher
symmetries. The phase diagram is shown in Figure 7.

4.4 Phase transitions
As it is suggested with red arrows in Figure 7, one can observe phase transitions
by slowly changing the detuning across resonance. In Ref. [3], the phase transition
to the state with Z2 translational symmetry was thoroughly studied.

First, the atoms were prepared with negative detuning with all atoms in the
ground state, shown in the first image in Figure 8. Then, the detuning was swept
over the resonance and the resulting states were measured [3]. Examples of these
are the other three images in Figure 8. We can see that the array consists of
sections where atoms alternate between the ground state and the Rydberg state,
as they do in the expected ground state. Those sections are separated by domain
walls of two neighboring atoms in the same state. In Figure 8, the domain walls
are emphasized with blue ellipses.

The mean number of domain walls and its variance was measured as a function
of the detuning ∆. The results are shown in Figure 9. The system exhibits an Ising-
type second-order quantum phase transition. The peak in the variance reflects that,
close to the transition point, domains of varying lengths are observed [3].
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Figure 8: Images of an array of 51 atoms. On the top, an image for negative
detuning is shown. Below, there are three instances of the system after the sweep
to positive detuning. The domain walls are indicated by blue ellipses. Adapted
from [3].
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Figure 9: Number of domain walls and its variance as a function of the detuning,
clearly showing a phase transition. The blue curve is the theoretically calculated
dependence of the mean domain wall density and the dots show the measured
values. Adapted from [3].

5 Conclusions
Optical tweezers provide a mechanism for the control of individual cold atom po-
sitions. The positions are not constrained to any geometry and the atoms can
be independently moved with the tweezer. Utilizing the dipole-dipole interaction
of Rydberg atoms, we can control the interactions between atoms in neighboring
optical traps. This creates a quantum system that can be used as a quantum sim-
ulator. Rydberg atom systems naturally map to spin systems [14], like the Ising
model in the described example. In addition to observing the phase diagram and
phase transitions, the dynamics of the system after a sudden change of the de-
tuning over the phase transition was also studied in Ref. [3]. The research is not
limited to the one-dimensional case that we presented, but can extend to two or all
three dimensions [14]. In similar setups other phenomena like many-body coherence
and entanglement can be studied [3]. There is also the possibility to study topo-
logical states, nonequilibrium dynamics of systems and to test the Kibble-Zurek
mechanism [3]. Quantum simulation can even be used to solve combinatorial op-
timization problems, for example the traveling salesman’s problem [14]. Finally,
Rydberg atoms are also a promising platform for quantum computing, since the
lattice sites can be individually addressed and the Rydberg blockade provides a
mechanism for quantum logical gates [14].

11



References
[1] A. Browaeys, Alkaline Atoms Held with Optical Tweezers, Physics 11, 135

(2018).
[2] X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y.-C. Liu, M. K. Tey and L. You,

A concise review of Rydberg atom based quantum computation and quantum
simulation, Chinese Physics B 30, 020305 (2021).

[3] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi,
A. S. Zibrov, M. Endres, M. Greiner et al., Probing many-body dynamics on a
51-atom quantum simulator, Nature 551, 579 (2017).

[4] R. Grimm, M. Weidemüller and Y. B. Ovchinnikov, Optical dipole traps for
neutral atoms, Advances in atomic, molecular, and optical physics 42, 95
(2000).

[5] N. Schlosser, G. Reymond and P. Grangier, Collisional blockade in microscopic
optical dipole traps, Physical review letters 89, 023005 (2002).

[6] M. Weber, J. Volz, K. Saucke, C. Kurtsiefer and H. Weinfurter, Analysis of a
single-atom dipole trap, Physical Review A 73, 043406 (2006).

[7] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Kra-
jenbrink, C. Senko, V. Vuletic, M. Greiner and M. D. Lukin, Atom-by-atom
assembly of defect-free one-dimensional cold atom arrays, Science 354, 1024
(2016).

[8] R. W. Boyd, Nonlinear optics (Academic press, 2020).
[9] D. Barredo, S. De Léséleuc, V. Lienhard, T. Lahaye and A. Browaeys, An

atom-by-atom assembler of defect-free arbitrary two-dimensional atomic ar-
rays, Science 354, 1021 (2016).

[10] D. Barredo, V. Lienhard, S. De Leseleuc, T. Lahaye and A. Browaeys, Syn-
thetic three-dimensional atomic structures assembled atom by atom, Nature
561, 79 (2018).

[11] T. F. Gallagher, Rydberg atoms, 3 (Cambridge University Press, 2005).
[12] D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample,

Journal of the Optical Society of America B 27, A208 (2010).
[13] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics (Cam-

bridge University Press, 2018).
[14] A. Browaeys and T. Lahaye, Many-body physics with individually controlled

Rydberg atoms, Nature Physics 16, 132 (2020).

12


	Introduction
	Atoms in optical tweezers
	Dipole traps
	Optical tweezers
	Preparation of defect-free atom arrays

	Rydberg atoms
	Basic properties of Rydberg atoms
	Rydberg state excitation and Rabi oscillations
	Dipole-dipole interactions
	Rydberg blockade

	Quantum simulator
	Experiment
	Hamiltonian
	Phase diagram
	Phase transitions

	Conclusions

