Quantum simulator using Rydberg atoms in optical tweezers

Seminar 2

Katja Gosar Advisor: dr. Peter Jeglič April 14th 2021

- Quantum technologies: communication, computation, simulation, sensing and metrology
- What is quantum simulation?

 $\mathsf{synthetic} \ \mathsf{quantum} \ \mathsf{system} \Longleftrightarrow \mathsf{real}\mathsf{-}\mathsf{world} \ \mathsf{system}$

- Why use cold atoms for quantum simulation?
 - \rightarrow controllability
 - \rightarrow scalability

Introduction

- 1. Atoms in optical tweezers
 - Dipole traps
 - Optical tweezers
 - Preparation of defect-free atom arrays
- 2. Rydberg atoms
 - Rydberg state excitation and Rabi oscillations
 - Dipole-dipole interaction and Rydberg blockade
- 3. Quantum simulator
 - Experiment and the Hamiltonian
 - Phase diagram and phase transitions

Energy of an induced dipole moment in an oscillating electric field with frequency $\boldsymbol{\omega}$

$$U_{\mathrm{dip}} = -\frac{1}{2} \langle \mathbf{pE} \rangle = -\frac{1}{2\epsilon_0 c} \mathrm{Re}(\alpha) I$$

 $\label{eq:alpha} \begin{array}{l} \alpha(\omega) \ \dots \ {\rm polarizability} \to {\rm Lorentz's \ model \ with \ resonance \ frequency \ } \omega_0, \\ {\rm damping \ } \Gamma \end{array}$

$$U_{\rm dip}(\mathbf{r}) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I(\mathbf{r})$$

 $\Delta = \omega - \omega_0$

- $\Delta < 0$ red detuning, attractive
- $\Delta > 0$ blue detuning, repulsive

individually controlled position and intensity of dipole traps

multitone driving \rightarrow multiple deflected beams

high NA \rightarrow tight focus \rightarrow collisional blockade effect \rightarrow at most one atom per trap

Preparation of defect-free atom arrays

- 1. loading from MOT (magneto-optical trap) to optical tweezers
- 2. fluorescence imaging to identify filled traps
- 3. rearrangement of traps (frequency sweep)

Endres et al. (2016)

Preparation of defect-free atom arrays

Barredo et al. (2016)

Barredo et al. (2018)

- highly excited valence electron high principal quantum number n
- small binding energy
- long radiative lifetime
- large polarizibility
- strong dipole-dipole interactions \rightarrow Rydberg blockade

Rydberg state excitation and Rabi oscillations

 $\Omega_N = \sqrt{N}\Omega$

 $\rightarrow\,$ effectively a two-level system with Rabi frequency Ω and detuning Δ

Bernien et al. (2017)

Dipole-dipole interactions

$$V_{dd} = \frac{e^2}{4\pi\epsilon_0} \frac{\mathbf{d}_1 \cdot \mathbf{d}_2 - 3(\mathbf{d}_1 \cdot \mathbf{e}_R)(\mathbf{d}_2 \cdot \mathbf{e}_R)}{R^3} \qquad |r'_1 r'_2\rangle \frac{1}{--\frac{E_1' + E_2'}{E_1' + E_2'}} \frac{\Delta E}{\delta_F}$$

$$\delta_F \gg V(R): \qquad \delta_F \approx C_6/R^6 \qquad \delta_F$$
Van der Waals interaction
$$|\mathbf{r}, \mathbf{r}\rangle = \frac{E_1 + E_2}{E_1 + E_2}$$

 $|r_1r_2
angle$ -

Van der Waals interaction

$$\Delta E \approx C_6/R^6$$

Van der Waals interaction

 \rightarrow max. one excited atom within Rydberg radius R_b

Quantum simulation experiment

Bernien et al. (2017)

$$H = \frac{1}{2}\hbar\Omega \sum_{i} \sigma_{x}^{i} - \hbar\Delta \sum_{i} n_{i} + \sum_{i < j} V_{ij}n_{i}n_{j}$$

- Ω ... Rabi frequency (intensity of the beams) $\sigma_x^i = |g_i\rangle\langle r_i| + |r_i\rangle\langle g_i|$
- Δ ... detuning $n_i = |r_i\rangle\langle r_i|$
- V_{ij} ... interaction (Rydberg blockade)

Phase diagram

Phase transition

○ * ○ • ○ • ○ • ○ * ○ * ○ • ○ • ○ • ○ •
0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •

Bernien et al. (2017)

 $\left. \begin{array}{l} \text{optical tweezers} \rightarrow \text{atom positions} \\ \text{Rydberg states} \rightarrow \text{interactions} \end{array} \right\} \text{ quantum simulator} \\ \end{array} \right\}$

Applications:

- quantum spin systems (Ising model, XY model)
- non-equilibrium dynamics
- topological states
- optimization algorithms
- quantum computing